八年級數學期末知識點
不渴望能夠一躍千里,只希望每天能夠前進一步。每一門科目都有自己的學習方法,但其實都是萬變不離其中的,數學其實和語文英語一樣,也是要記、要背、要練的。下面是小編給大家整理的一些八年級數學的知識點,希望對大家有所幫助。
八年級數學期末知識點
數據的分析
1、平均數
①一般地,對于n個數x1x2...xn,我們把(x1+x2+???+xn)叫做這n個數的算數平均數,簡稱平均數記為。
②在實際問題中,一組數據里的各個數據的“重要程度”未必相同,因而在計算,這組數據的平均數時,往往給每個數據一個權,叫做加權平均數。
2、中位數與眾數
①中位數:一般地,n個數據按大小順序排列,處于最中間位置的一個數據(或最中間兩個數據的平均數)叫做這組數據的中位數。
②一組數據中出現次數最多的那個數據叫做這組數據的眾數。
③平均數、中位數和眾數都是描述數據集中趨勢的統計量。
④計算平均數時,所有數據都參加運算,它能充分地利用數據所提供的信息,因此在現實生活中較為常用,但他容易受極端值影響。
⑤中位數的優點是計算簡單,受極端值影響較小,但不能充分利用所有數據的信息。
⑥各個數據重復次數大致相等時,眾數往往沒有特別意義。
3、從統計圖分析數據的集中趨勢
4、數據的離散程度
①實際生活中,除了關心數據的集中趨勢外,人們還關注數據的離散程度,即它們相對于集中趨勢的偏離情況。一組數據中數據與最小數據的差,(稱為極差),就是刻畫數據離散程度的一個統計量。
②數學上,數據的離散程度還可以用方差或標準差刻畫。
③方差是各個數據與平均數差的平方的平均數。
④其中是x1,x2.....xn平均數,s2是方差,而標準差就是方差的算術平方根。
⑤一般而言,一組數據的極差、方差或標準差越小,這組數據就越穩定。
初二數學知識點
軸對稱
一.知識框架
二.知識概念
1.對稱軸:如果一個圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
2.性質:(1)軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
(2)角平分線上的點到角兩邊距離相等。
(3)線段垂直平分線上的任意一點到線段兩個端點的距離相等。
(4)與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
(5)軸對稱圖形上對應線段相等、對應角相等。
3.等腰三角形的性質:等腰三角形的兩個底角相等,(等邊對等角)
4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為“三線合一”。
5.等腰三角形的判定:等角對等邊。
6.等邊三角形角的特點:三個內角相等,等于60°,
7.等邊三角形的判定:三個角都相等的三角形是等腰三角形。
有一個角是60°的等腰三角形是等邊三角形
有兩個角是60°的三角形是等邊三角形。
8.直角三角形中,30°角所對的直角邊等于斜邊的一半。
9.直角三角形斜邊上的中線等于斜邊的一半。
本章內容要求學生在建立在軸對稱概念的基礎上,能夠對生活中的圖形進行分析鑒賞,親身經歷數學美,正確理解等腰三角形、等邊三角形等的性質和判定,并利用這些性質來解決一些數學問題。
數學學習方法
1、有準備地進入每一堂課,帶著興趣,帶著問題,帶著目的聽課。準備什么呢就是根據課程表的安排,有針對性地預習弱項課程,預習時要弄清下一節課的內容,其中哪些是清楚的,哪些是模糊的,哪些是不懂的,由此確定出聽課的重點。課后進行總結,歸納出所講知識的框架,然后做相關練習。
2、按部就班,平時學習不應貪快,要一章一章過關,不要輕易留下不明白或者理解不深刻的問題。
3、學習,“習”的作用決定了學習結果是否有好的成效。每次聽完課后,閱讀一些相關的輔導資料,做一些相關的習題?,F在的輔導資料很多,哪一種好呢哪一種適合自己的情況在書店的輔導資料書架前大致閱讀一些,感覺哪本自己看起來很舒服,就用哪一本。如果還感覺不準,可以咨詢代課老師。
數學學習方法技巧
把握心理特點搞好考前復習
實踐證明,一個人在氣質、性格、心理穩定程度等因素也會影響考前復習??忌趶土曈歼^程中,應根據自己的心理特點來制訂復習迎考計劃,根據自己的心態來調整復習的進度,選擇與運用的復習方式方法,使自己的考前復習達到預期的效果。
1、課本不容忽視
對于初二的學生來說,都在學習新課,課本是大家都容易忽視的一個重要的復習資料。平時在學校的課堂上大家都會隨堂記筆記,課本基本不會翻看,建議同學們在翻看筆記的同時,對照課本,把學過的知識點反復閱讀、理解,并對照課后練習里的習題進行反復思考、琢磨、融會貫通,加深對知識點的理解。對于課本上的重點內容、重點例題也要著重記憶。
2、錯題本
相信學習習慣好的學生都應該有一本錯題本,把每次習題、作業、測試中的錯題抄錄下來,明確答案,找到錯誤原因,發現自己知識和能力上的薄弱點,經常拿出來翻看,遇到反復做錯的題目,要主動和同學商量,向老師請教,徹底把題目弄懂、弄透,以免再犯同類錯誤。