五年級數學上冊知識點整理
知識是取之不盡,用之不竭的。只有限度地挖掘它,才能體會到學習的樂趣。任何一門學科的知識都需要大量的記憶和練習來鞏固。雖然辛苦,但也伴隨著快樂!下面是小編給大家整理的一些五年級數學的知識點,希望對大家有所幫助。
小學五年級上冊數學《小數乘法》知識點
一、意義
1、小數乘整數:求幾個相同加數的和的簡便運算。
如:3.2+3.2+3.2+3.2+3.2改用乘法算式表示為(3.2×5),這個乘法算式表示的意義是(5個3.2是多少)
2、小數乘小數:就是求這個數的幾分之幾是多少。
如:1.5×0.8就是求1.5的十分之八是多少。
二、算理
1、計算方法:按整數乘法的法則算出積,再點小數點;點小數點時,要看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點。
小數乘法計算法則簡記為:一算,二看,三數,四點,五去;
2、注意:計算結果中,小數部分末尾的0要去掉,把小數化簡;小數部分位數不夠時,要用0占位。
3、乘法的驗算有很多種方法:可以交換兩個因數的位置再算一遍;可以用估算的方法;還可以用計算器驗算。
4、積與因數的關系:
一個數(0除外)乘大于1的數,積比原來的數大;
一個數(0除外)乘小于1的數,積比原來的數小。
用字母表示:a×b=c(a不等于0)
b>1,a>c
b=1,a=c
b<1,a
三、積的近似數
1、求近似數的方法有三種:四舍五入法、進一法、去尾法,在這一單元主要用四舍五入法。
步驟如下:先按照小數乘小數的方法算出積,再按題目的要求和“四舍五入”法取近似值。
注意:表示近似數時小數末尾的0不能隨便去掉。
如:0.599保留兩位小數是( )
2、通常情況下,人民幣的最小單位是分,以元為單位的小數表示“分”的是百分位。
四、混合運算
小數四則運算順序跟整數是一樣的。
整數乘法的交換律、結合律和分配律,對于小數乘法也適用。
關于乘法分配律的簡算是這一部分的重點和難點。
案例:0.25×4.78×4
0.65×202
2.4×1.5-2.4
2.4×0.6+2.6×0.6
12.5×32×0.25
五、解決問題
1、實際生活中的估算應用,可以估大或者估小,要根據實際情況選擇適當的估算策略。
2、分段計費的問題,比如乘坐出租車的問題、電費水費的問題都屬于分段計費。解決方案有兩種:第一種分段計費后在合并;第二種全程單價計算然后再加上少算的金額。
小學五年級上冊數學《簡易方程》知識點
1、方程的意義
含有未知數的等式,叫做方程。
2、方程和等式的關系
3、方程的解和解方程的區別
使方程左右兩邊相等的未知數的值,叫做方程的解。
求方程的解的過程叫做解方程。
4、列方程解應用題的一般步驟
(1)弄清題意,找出未知數,并用表示。
(2)找出應用題中數量之間的相等關系,列方程。
(3)解方程。
(4)檢驗,寫出答案。
5、數量關系式
加數=和-另一個加數減數=被減數–差被減數=差+減數
因數=積另一個因數除數=被除數商被除數=商除數
分析法
把整體分解為部分,把復雜的事物分解為各個部分或要素,并對這些部分或要素進行研究、推導的一種思維方法叫做分析法。
依據:總體都是由部分構成的。
思路:為了更好地研究和解決總體,先把整體的各部分或要素割裂開來,再分別對照要求,從而理順解決問題的思路。
也就是從求解的問題出發,正確選擇所需要的兩個條件,依次推導,一直到問題得到解決為止,這種解題模式是“由果溯因”。分析法也叫逆推法。常用“枝形圖”進行圖解思路。
例7:玩具廠計劃每天生產200件玩具,已經生產了6天,共生產1260件。問平均每天超過計劃多少件?
思路:要求平均每天超過計劃多少件,必須知道:計劃每天生產多少件和實際每天生產多少件。計劃每天生產多少件已知,實際每天生產多少件,題中沒有告訴,還得求出來。要求實際每天生產多少件玩具,必須知道:實際生產多少天,和實際生產多少件,這兩個條件題中都已知。
綜合法
把對象的各個部分或各個方面或各個要素聯結起來,并組合成一個有機的整體來研究、推導和一種思維方法叫做綜合法。
用綜合法解數學題時,通常把各個題知看作是部分(或要素),經過對各部分(或要素)相互之間內在聯系一層層分析,逐步推導到題目要求,所以,綜合法的解題模式是執因導果,也叫順推法。這種方法適用于已知條件較少,數量關系比較簡單的數學題。
例8:兩個質數,它們的差是小于30的合數,它們的和即是11的倍數又是小于50的偶數。寫出適合上面條件的各組數。
思路:11的倍數同時小于50的偶數有22和44。
兩個數都是質數,而和是偶數,顯然這兩個質數中沒有2。
和是22的兩個質數有:3和19,5和17。它們的差都是小于30的合數嗎?
和是44的兩個質數有:3和41,7和37,13和31。它們的差是小于30的合數嗎?
這就是綜合法的思路。
方程法
用字母表示未知數,并根據等量關系列出含有字母的表達式(等式)。列方程是一個抽象概括的過程,解方程是一個演繹推導的過程。方程法的特點是把未知數等同于已知數看待,參與列式、運算,克服了算術法必須避開求知數來列式的不足。有利于由已知向未知的轉化,從而提高了解題的效率和正確率。
例9:一個數擴大3倍后再增加100,然后縮小2倍后再減去36,得50。求這個數。
例10:一桶油,第一次用去40%,第二次比第一次多用10千克,還剩余6千克。這桶油重多少千克?
這兩題用方程解就比較容易。
參數法
用只參與列式、運算而不需要解出的字母或數表示有關數量,并根據題意列出算式的一種方法叫做參數法。參數又叫輔助未知數,也稱中間變量。參數法是方程法延伸、拓展的產物。
例11:汽車爬山,上山時平均每小時行15千米,下山時平均每小時行駛10千米,問汽車的平均速度是每小時多少千米?
上下山的平均速度不能用上下山的速度和除以2。而應該用上下山的路程÷2。
例12:一項工作,甲單獨做要4天完成,乙單獨做要5天完成。兩人合做要多少天完成?
其實,把總工作量看作“1”,這個“1”就是參數,如果把總工作量看作“2、3、4……”都可以,只不過看作“1”運算最方便。
排除法
排除對立的結果叫做排除法。
排除法的邏輯原理是:任何事物都有其對立面,在有正確與錯誤的多種結果中,一切錯誤的結果都排除了,剩余的只能是正確的結果。這種方法也叫淘汰法、篩選法或反證法。這是一種不可缺少的形式思維方法。
例13:為什么說除2外,所有質數都是奇數?
這就要用反證法:比2大的所有自然數不是質數就是合數。假設:比2大的質數有偶數,那么,這個偶數一定能被2整除,也就是說它一定有約數2。一個數的約數除了1和它本身外,還有別的約數(約數2),這個數一定是合數而不是質數。這和原來假定是質數對立(矛盾)。所以,原來假設錯誤。
例14:判斷題:(1)同一平面上兩條直線不平行,就一定相交。(錯)
(2)分數的分子和分母同乘以或同除以一個相同的數,分數大小不變。(錯)
五年級數學上冊知識點整理相關文章:
★ 五年級數學知識點
五年級數學上冊知識點整理




