• <output id="aynwq"><form id="aynwq"><code id="aynwq"></code></form></output>

    <mark id="aynwq"><option id="aynwq"></option></mark>
  • <mark id="aynwq"><option id="aynwq"></option></mark><label id="aynwq"><dl id="aynwq"></dl></label>
  • 學習啦>學習方法>各學科學習方法>數學學習方法>

    高一數學期末考試知識點總結

    時間: 維維0 分享

    隨著期末考試的來臨,高中數學知識是非常重要的一項,下面小編給大家帶來了高一數學期末考試知識點總結7篇,僅供參考,歡迎大家閱讀,希望能夠對大家有所幫助哦。

    高一數學期末考試知識點總結

    高一數學期末考試知識點總結篇1

    集合具有某種特定性質的事物的總體。這里的事物可以是人,物品,也可以是數學元素。

    例如:

    1、分散的人或事物聚集到一起;使聚集:緊急~。

    2、數學名詞。一組具有某種共同性質的數學元素:有理數的~。

    3、口號等等。集合在數學概念中有好多概念,如集合論:集合是現代數學的基本概念,專門研究集合的理論叫做集合論。康托(Cantor,G.F.P.,1845年1918年,德國數學家先驅,是集合論的,目前集合論的基本思想已經滲透到現代數學的所有領域。

    集合,在數學上是一個基礎概念。什么叫基礎概念?基礎概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下定義。

    集合是把人們的直觀的或思維中的某些確定的能夠區分的對象匯合在一起,使之成為一個整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。

    集合與集合之間的關系

    某些指定的對象集在一起就成為一個集合集合符號,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。

    (說明一下:如果集合A的所有元素同時都是集合B的元素,則A稱作是B的子集,寫作AB。若A是B的子集,且A不等于B,則A稱作是B的真子集,一般寫作AB。中學教材課本里將符號下加了一個符號,不要混淆,考試時還是要以課本為準。所有男人的集合是所有人的集合的真子集。)

    高一數學期末考試知識點總結篇2

    兩個平面的位置關系:

    (1)兩個平面互相平行的定義:空間兩平面沒有公共點

    (2)兩個平面的位置關系:

    兩個平面平行——沒有公共點;兩個平面相交——有一條公共直線。

    a、平行

    兩個平面平行的判定定理:如果一個平面內有兩條相交直線都平行于另一個平面,那么這兩個平面平行。

    兩個平面平行的性質定理:如果兩個平行平面同時和第三個平面相交,那么交線平行。

    b、相交

    二面角

    (1)半平面:平面內的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。

    (2)二面角:從一條直線出發的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]

    (3)二面角的棱:這一條直線叫做二面角的棱。

    (4)二面角的面:這兩個半平面叫做二面角的面。

    (5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。

    (6)直二面角:平面角是直角的二面角叫做直二面角。

    兩平面垂直

    兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥

    兩平面垂直的判定定理:如果一個平面經過另一個平面的一條垂線,那么這兩個平面互相垂直

    兩個平面垂直的性質定理:如果兩個平面互相垂直,那么在一個平面內垂直于交線的直線垂直于另一個平面。

    二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補關系)

    高一數學期末考試知識點總結篇3

    兩個平面的位置關系:

    (1)兩個平面互相平行的定義:空間兩平面沒有公共點

    (2)兩個平面的位置關系:

    兩個平面平行——沒有公共點;兩個平面相交——有一條公共直線。

    a、平行

    兩個平面平行的判定定理:如果一個平面內有兩條相交直線都平行于另一個平面,那么這兩個平面平行。

    兩個平面平行的性質定理:如果兩個平行平面同時和第三個平面相交,那么交線平行。

    b、相交

    二面角

    (1)半平面:平面內的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。

    (2)二面角:從一條直線出發的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]

    (3)二面角的棱:這一條直線叫做二面角的棱。

    (4)二面角的面:這兩個半平面叫做二面角的面。

    (5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。

    (6)直二面角:平面角是直角的二面角叫做直二面角。

    兩平面垂直

    兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥

    兩平面垂直的判定定理:如果一個平面經過另一個平面的一條垂線,那么這兩個平面互相垂直

    兩個平面垂直的性質定理:如果兩個平面互相垂直,那么在一個平面內垂直于交線的直線垂直于另一個平面。

    二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補關系)

    棱錐

    棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐。

    棱錐的性質:

    (1)側棱交于一點。側面都是三角形

    (2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方

    正棱錐

    正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。

    正棱錐的性質:

    (1)各側棱交于一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

    (3)多個特殊的直角三角形

    a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。

    b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。

    集合

    集合具有某種特定性質的事物的總體。這里的“事物”可以是人,物品,也可以是數學元素。例如:1、分散的人或事物聚集到一起;使聚集:緊急~。2、數學名詞。一組具有某種共同性質的數學元素:有理數的~。3、口號等等。集合在數學概念中有好多概念,如集合論:集合是現代數學的基本概念,專門研究集合的理論叫做集合論。康托(Cantor,G.F.P.,1845年—1918年,德國數學家先驅,是集合論的創始者,目前集合論的基本思想已經滲透到現代數學的所有領域。

    集合,在數學上是一個基礎概念。什么叫基礎概念?基礎概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下“定義”。

    集合是把人們的直觀的或思維中的某些確定的能夠區分的對象匯合在一起,使之成為一個整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。

    集合與集合之間的關系

    某些指定的對象集在一起就成為一個集合集合符號,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。(說明一下:如果集合A的所有元素同時都是集合B的元素,則A稱作是B的子集,寫作A B。若A是B的子集,且A不等于B,則A稱作是B的真子集,一般寫作A屬于B。中學教材課本里將符號下加了一個不等于符號,不要混淆,考試時還是要以課本為準。所有男人的集合是所有人的集合的真子集。)

    高一數學期末考試知識點總結篇4

    定義域

    (高中函數定義)設A,B是兩個非空的數集,如果按某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有確定的數f(x)和它對應,那么就稱f:A--B為集合A到集合B的一個函數,記作y=f(x),x屬于集合A。其中,x叫作自變量,x的取值范圍A叫作函數的定義域;

    值域

    名稱定義

    函數中,應變量的取值范圍叫做這個函數的值域函數的值域,在數學中是函數在定義域中應變量所有值的集合

    常用的求值域的方法

    (1)化歸法;(2)圖象法(數形結合);(3)函數單調性法;(4)配方法;(5)換元法;(6)反函數法(逆求法);(7)判別式法;(8)復合函數法;(9)三角代換法;(10)基本不等式法等

    關于函數值域誤區

    定義域、對應法則、值域是函數構造的三個基本“元件”。平時數學中,實行“定義域優先”的原則,無可置疑。然而事物均具有二重性,在強化定義域問題的同時,往往就削弱或談化了,對值域問題的探究,造成了一手“硬”一手“軟”,使學生對函數的掌握時好時壞,事實上,定義域與值域二者的位置是相當的,絕不能厚此薄皮,何況它們二者隨時處于互相轉化之中(典型的例子是互為反函數定義域與值域的相互轉化)。如果函數的值域是無限集的話,那么求函數值域不總是容易的,反靠不等式的運算性質有時并不能奏效,還必須聯系函數的奇偶性、單調性、有界性、周期性來考慮函數的取值情況。才能獲得正確答案,從這個角度來講,求值域的問題有時比求定義域問題難,實踐證明,如果加強了對值域求法的研究和討論,有利于對定義域內函的理解,從而深化對函數本質的認識。

    “范圍”與“值域”相同嗎?

    “范圍”與“值域”是我們在學習中經常遇到的兩個概念,許多同學常常將它們混為一談,實際上這是兩個不同的概念。“值域”是所有函數值的集合(即集合中每一個元素都是這個函數的取值),而“范圍”則只是滿足某個條件的一些值所在的集合(即集合中的元素不一定都滿足這個條件)。也就是說:“值域”是一個“范圍”,而“范圍”卻不一定是“值域”。

    高一數學期末考試知識點總結篇5

    1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

    2、集合的中元素的三個特性:

    1.元素的確定性; 2.元素的互異性; 3.元素的無序性

    說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

    (2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

    (3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

    (4)集合元素的三個特性使集合本身具有了確定性和整體性。

    3、集合的表示:{ … } 如{我校的籃球隊員},{太平洋大西洋印度洋北冰洋}

    1. 用拉丁字母表示集合:A={我校的籃球隊員}B={12345}

    2.集合的表示方法:列舉法與描述法。

    注意啊:常用數集及其記法:

    非負整數集(即自然數集) 記作:N

    正整數集 N__或 N+ 整數集Z 有理數集Q 實數集R

    關于“屬于”的概念

    集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A 記作 a∈A ,相反,a不屬于集合A 記作 a?A

    列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。

    描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。

    ①語言描述法:例:{不是直角三角形的三角形}

    ②數學式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}

    4、集合的分類:

    1.有限集 含有有限個元素的集合

    2.無限集 含有無限個元素的集合

    3.空集 不含任何元素的集合 例:{x|x2=-5}

    二、集合間的基本關系

    1.“包含”關系子集

    注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

    反之: 集合A不包含于集合B或集合B不包含集合A記作A B或B A

    2.“相等”關系(5≥5,且5≤5,則5=5)

    實例:設 A={x|x2-1=0} B={-11} “元素相同”

    結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

    ① 任何一個集合是它本身的子集。A?A

    ②真子集:如果A?B且A? B那就說集合A是集合B的真子集,記作A B(或B A)

    ③如果 A?B B?C 那么 A?C

    ④ 如果A?B 同時 B?A 那么A=B

    3. 不含任何元素的集合叫做空集,記為

    規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

    三、集合的運算

    1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合叫做AB的交集.

    記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.

    2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做AB的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.

    3、交集與并集的性質:A∩A = A A∩φ= φ A∩B = B∩A,A∪A = A

    A∪φ= A A∪B = B∪A.

    4、全集與補集

    (1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

    記作: CSA 即 CSA ={x ? x?S且 x?A}

    (2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。

    (3)性質:⑴CU(C UA)=A ⑵(C UA)∩A= ⑶(CUA)∪A=U

    高一數學期末考試知識點總結篇6

    1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的`y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域.

    三角函數公式

    兩角和公式

    sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

    cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

    tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

    ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

    倍角公式

    tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

    cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

    半角公式

    sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

    cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

    tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

    ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

    和差化積

    2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

    2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

    sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

    tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

    ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

    某些數列前n項和

    1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

    2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

    13+23+33+43+53+63+…n3=n2(n+1)2/4 1__2+2__3+3__4+4__5+5__6+6__7+…+n(n+1)=n(n+1)(n+2)/3

    正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑

    余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角

    弧長公式 l=a__r a是圓心角的弧度數r >0 扇形面積公式 s=1/2__l__r

    乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

    三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

    |a-b|≥|a|-|b| -|a|≤a≤|a|

    一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

    根與系數的關系 X1+X2=-b/a X1__X2=c/a 注:韋達定理

    判別式

    b2-4ac=0 注:方程有兩個相等的實根

    b2-4ac>0 注:方程有兩個不等的實根

    b2-4ac<0 注:方程沒有實根,有共軛復數根

    降冪公式

    (sin^2)x=1-cos2x/2

    (cos^2)x=i=cos2x/2

    萬能公式

    令tan(a/2)=t

    sina=2t/(1+t^2)

    cosa=(1-t^2)/(1+t^2)

    tana=2t/(1-t^2)

    §1.2.1、函數的概念

    1、 設A、B是非空的數集,如果按照某種確定的對應關系,使對于集合A中的任意一個數,在集合B中都有惟一確定的數和它對應,那么就稱為集合A到集合B的一個函數,記作:.

    2、 一個函數的構成要素為:定義域、對應關系、值域.如果兩個函數的定義域相同,并且對應關系完全一致,則稱這兩個函數相等.

    §1.2.2、函數的表示法

    1、 函數的三種表示方法:解析法、圖象法、列表法.

    §1.3.1、單調性與最大(小)值

    1、 注意函數單調性證明的一般格式:

    §1.3.2、奇偶性

    1、 一般地,如果對于函數的定義域內任意一個,都有,那么就稱函數為偶函數.偶函數圖象關于軸對稱.

    2、 一般地,如果對于函數的定義域內任意一個,都有,那么就稱函數為奇函數.奇函數圖象關于原點對稱.

    高一數學期末考試知識點總結相關文章

    高一數學知識點總結大全(最新版)

    高一數學必考知識點總結

    高一數學必備知識點

    高一數學知識點歸納重要

    高一數學必備知識點總結

    高一數學考試必考的知識點概括

    高一數學有用必考知識點歸納

    高一數學必背知識點總結

    高一數學知識點筆記

    604286 主站蜘蛛池模板: 韩国理论福利片午夜| 三级4级做a爰60分钟| 色综合合久久天天给综看| 推油少妇久久99久久99久久| 公和我做好爽添厨房| 91精品天美精东蜜桃传媒入口| 欧美性色欧美a在线播放| 国产成人精品免费视频大全| 久久99国产精品久久99小说| 福利所第一导航| 国产精品视频免费一区二区| 五月天婷婷视频在线观看| 老司机午夜在线视频免费观| 天天影视色香欲综合免费| 亚洲午夜国产精品无码| 蜜柚最新在线观看| 天天插在线视频| 亚洲AV无码精品网站| 色依依视频视频在线观看| 大桥未久aⅴ一区二区| 亚洲av极品无码专区在线观看| 色偷偷狠狠色综合网| 在线观看黄日本高清视频| 乱人伦人妻中文字幕无码| 美女扒开尿口让男人看的视频| 国产黄大片在线观看| 久久国产真实乱对白| 男男车车的车车网站免费| 国产精品99久久久精品无码| 中文字幕av无码专区第一页| 欧美黑人巨大xxxxx| 国产午夜福利精品一区二区三区 | 成人国产在线观看高清不卡| 亚洲精品美女视频| 香蕉在线视频播放| 天堂网www最新版资源在线| 久九九久福利精品视频视频| 精品久久久久久国产牛牛app| 国产精品国产福利国产秒拍| 中文字幕在线电影观看| 欧美日韩国产成人综合在线|