淺談計算機與大數據的相關論文
在大數據環境下,計算機信息處理技術也面臨新的挑戰,要求計算機信息處理技術必須不斷的更新發展,以能夠對當前的計算機信息處理需求滿足。下面是學習啦小編給大家推薦的計算機與大數據的相關論文,希望大家喜歡!
計算機與大數據的相關論文篇一
淺談“大數據”時代的計算機信息處理技術
[摘 要]在大數據環境下,計算機信息處理技術也面臨新的挑戰,要求計算機信息處理技術必須不斷的更新發展,以能夠對當前的計算機信息處理需求滿足。本文重點分析大數據時代的計算機信息處理技術。
[關鍵詞]大數據時代;計算機;信息處理技術
在科學技術迅速發展的當前,大數據時代已經到來,大數據時代已經占領了整個環境,它對計算機的信息處理技術產生了很大的影響。計算機在短短的幾年內,從稀少到普及,使人們的生活有了翻天覆地的變化,計算機的快速發展和應用使人們走進了大數據時代,這就要求對計算機信息處理技術應用時,則也就需要在之前基礎上對技術實施創新,優化結構處理,從而讓計算機數據更符合當前時代發展。
一、大數據時代信息及其傳播特點
自從“大數據”時代的到來,人們的信息接收量有明顯加大,在信息傳播中也出現傳播速度快、數據量大以及多樣化等特點。其中數據量大是目前信息最顯著的特點,隨著時間的不斷變化計算機信息處理量也有顯著加大,只能夠用海量還對當前信息數量之大形容;傳播速度快也是當前信息的主要特點,計算機在信息傳播中傳播途徑相當廣泛,傳播速度也相當驚人,1s內可以完成整個信息傳播任務,具有較高傳播效率。在傳播信息過程中,還需要實施一定的信息處理,在此過程中則需要應用相應的信息處理工具,實現對信息的專門處理,隨著目前信息處理任務的不斷加強,信息處理工具也有不斷的進行創新[1];信息多樣化,則也就是目前數據具有多種類型,在龐大的數據庫中,信息以不同的類型存在著,其中包括有文字、圖片、視頻等等。這些信息類型的格式也在不斷發生著變化,從而進一步提高了計算機信息處理難度。目前計算機的處理能力、打印能力等各項能力均有顯著提升,尤其是當前軟件技術的迅速發展,進一步提高了計算機應用便利性。微電子技術的發展促進了微型計算機的應用發展,進一步強化了計算機應用管理條件。
大數據信息不但具有較大容量,同時相對于傳統數據來講進一步增強了信息間關聯性,同時關聯結構也越來越復雜,導致在進行信息處理中需要面臨新的難度。在網絡技術發展中重點集中在傳輸結構發展上,在這種情況下計算機必須要首先實現網絡傳輸結構的開放性設定,從而打破之前計算機信息處理中,硬件所具有的限制作用。因為在當前計算機網絡發展中還存在一定的不足,在完成云計算機網絡構建之后,才能夠在信息處理過程中,真正的實現收放自如[2]。
二、大數據時代的計算機信息處理技術
(一)數據收集和傳播技術
現在人們通過電腦也就可以接收到不同的信息類型,但是在進行信息發布之前,工作人員必須要根據需要采用信息處理技術實施相應的信息處理。計算機采用信息處理技術實施信息處理,此過程具有一定復雜性,首先需要進行數據收集,在將相關有效信息收集之后首先對這些信息實施初步分析,完成信息的初級操作處理,總體上來說信息處理主要包括:分類、分析以及整理。只有將這三步操作全部都完成之后,才能夠把這些信息完整的在計算機網絡上進行傳播,讓用戶依照自己的實際需求篩選滿足自己需求的信息,借助于計算機傳播特點將信息數據的閱讀價值有效的實現。
(二)信息存儲技術
在目前計算機網絡中出現了很多視頻和虛擬網頁等內容,隨著人們信息接收量的不斷加大,對信息儲存空間也有較大需求,這也就是對計算機信息存儲技術提供了一個新的要求。在數據存儲過程中,已經出現一系列存儲空間無法滿足當前存儲要求,因此必須要對當前計算機存儲技術實施創新發展。一般來講計算機數據存儲空間可以對當前用戶關于不同信息的存儲需求滿足,但是也有一部分用戶對于計算機存儲具有較高要求,在這種情況下也就必須要提高計算機數據存儲性能[3],從而為計算機存儲效率提供有效保障。因此可以在大數據存儲特點上完成計算機信息新存儲方式,不但可以有效的滿足用戶信息存儲需求,同時還可以有效的保障普通儲存空間不會出現被大數據消耗問題。
(三)信息安全技術
大量數據信息在計算機技術發展過程中的出現,導致有一部分信息內容已經出現和之前信息形式的偏移,構建出一些新的計算機信息關聯結構,同時具有非常強大的數據關聯性,從而也就導致在計算機信息處理中出現了新的問題,一旦在信息處理過程中某個信息出現問題,也就會導致與之關聯緊密的數據出現問題。在實施相應的計算機信息管理的時候,也不像之前一樣直接在單一數據信息之上建立,必須要實現整個數據庫中所有將數據的統一安全管理。從一些角度分析,這種模式可以對計算機信息處理技術水平有顯著提升,并且也為計算機信息處理技術發展指明了方向,但是因為在計算機硬件中存在一定的性能不足,也就導致在大數據信息安全管理中具有一定難度。想要為數據安全提供有效保障,就必須要注重數據安全技術管理技術的發展。加強當前信息安全體系建設,另外也必須要對計算機信息管理人員專業水平進行培養,提高管理人員專業素質和專業能力,從而更好的滿足當前網絡信息管理體系發展需求,同時也要加強關于安全技術的全面深入研究工作[4]。目前在大數據時代下計算機信息安全管理技術發展還不夠成熟,對于大量的信息還不能夠實施全面的安全性檢測,因此在未來計算機信息技術研究中安全管理屬于重點方向。但是因為目前還沒有構建完善的計算機安全信息管理體系,因此首先應該強化關于計算機重點信息的安全管理,這些信息一旦發生泄漏,就有可能會導致出現非常嚴重的損失。目前來看,這種方法具有一定可行性。
(四)信息加工、傳輸技術
在實施計算機信息數據處理和傳輸過程中,首先需要完成數據采集,同時還要實時監控數據信息源,在數據庫中將采集來的各種信息數據進行存儲,所有數據信息的第一步均是完成采集。其次才能夠對這些采集來的信息進行加工處理,通常來說也就是各種分類及加工。最后把已經處理好的信息,通過數據傳送系統完整的傳輸到客戶端,為用戶閱讀提供便利。
結語:
在大數據時代下,計算機信息處理技術也存在一定的發展難度,從目前專業方面來看,還存在一些問題無法解決,但是這些難題均蘊含著信息技術發展的重要機遇。在當前計算機硬件中,想要完成計算機更新也存在一定的難度,但是目前計算機未來的發展方向依舊是云計算網絡,把網絡數據和計算機硬件數據兩者分開,也就有助于實現云計算機網絡的有效轉化。隨著科學技術的不斷發展相信在未來的某一天定能夠進入到計算機信息處理的高速發展階段。
參考文獻
[1] 馮瀟婧.“大數據”時代背景下計算機信息處理技術的分析[J].計算機光盤軟件與應用,2014,(05):105+107.
[2] 詹少強.基于“大數據”時代剖析計算機信息處理技術[J].網絡安全技術與應用,2014,(08):49-50.
[3] 曹婷.在信息網絡下計算機信息處理技術的安全性[J].民營科技,2014, (12):89CNKI
[4] 申鵬.“大數據”時代的計算機信息處理技術初探[J].計算機光盤軟件與應用,2014,(21):109-110
計算機與大數據的相關論文篇二
試談計算機軟件技術在大數據時代的應用
摘要:大數據的爆炸式增長在大容量、多樣性和高增速方面,全面考驗著現代企業的數據處理和分析能力;同時,也為企業帶來了獲取更豐富、更深入和更準確地洞察市場行為的大量機會。對企業而言,能夠從大數據中獲得全新價值的消息是令人振奮的。然而,如何從大數據中發掘出“真金白銀”則是一個現實的挑戰。這就要求采用一套全新的、對企業決策具有深遠影響的解決方案。
關鍵詞:計算機 大數據時代 容量 準確 價值 影響 方案
1 概述
自從計算機出現以后,傳統的計算工作已經逐步被淘汰出去,為了在新的競爭與挑戰中取得勝利,許多網絡公司開始致力于數據存儲與數據庫的研究,為互聯網用戶提供各種服務。隨著云時代的來臨,大數據已經開始被人們廣泛關注。一般來講,大數據指的是這樣的一種現象:互聯網在不斷運營過程中逐步壯大,產生的數據越來越多,甚至已經達到了10億T。大數據時代的到來給計算機信息處理技術帶來了更多的機遇和挑戰,隨著科技的發展,計算機信息處理技術一定會越來越完善,為我們提供更大的方便。
大數據是IT行業在云計算和物聯網之后的又一次技術變革,在企業的管理、國家的治理和人們的生活方式等領域都造成了巨大的影響。大數據將網民與消費的界限和企業之間的界限變得模糊,在這里,數據才是最核心的資產,對于企業的運營模式、組織結構以及文化塑造中起著很大的作用。所有的企業在大數據時代都將面對戰略、組織、文化、公共關系和人才培養等許多方面的挑戰,但是也會迎來很大的機遇,因為只是作為一種共享的公共網絡資源,其層次化和商業化不但會為其自身發展帶來新的契機,而且良好的服務品質更會讓其充分具有獨創性和專用性的鮮明特點。所以,知識層次化和商業化勢必會開啟知識創造的嶄新時代??梢姡@是一個競爭與機遇并存的時代。
2 大數據時代的數據整合應用
自從2013年,大數據應用帶來令人矚目的成績,不僅國內外的產業界與科技界,還有各國政府部門都在積極布局、制定戰略規劃。更多的機構和企業都準備好了迎接大數據時代的到來,大數據的內涵應是數據的資產化和服務化,而挖掘數據的內在價值是研究大數據技術的最終目標。在應用數據快速增長的背景下,為了降低成本獲得更好的能效,越來越趨向專用化的系統架構和數據處理技術逐漸擺脫傳統的通用技術體系。如何解決“通用”和“專用”體系和技術的取舍,以及如何解決數據資產化和價值挖掘問題。
企業數據的應用內容涵蓋數據獲取與清理、傳輸、存儲、計算、挖掘、展現、開發平臺與應用市場等方面,覆蓋了數據生產的全生命周期。除了Hadoop版本2.0系統YARN,以及Spark等新型系統架構介紹外,還將探討研究流式計算(Storm,Samza,Puma,S4等)、實時計算(Dremel,Impala,Drill)、圖計算(Pregel,Hama,Graphlab)、NoSQL、NewSQL和BigSQL等的最新進展。在大數據時代,借力計算機智能(MI)技術,通過更透明、更可用的數據,企業可以釋放更多蘊含在數據中的價值。實時、有效的一線質量數據可以更好地幫助企業提高產品品質、降低生產成本。企業領導者也可根據真實可靠的數據制訂正確戰略經營決策,讓企業真正實現高度的計算機智能決策辦公,下面我們從通信和商業運營兩個方面進行闡述。
2.1 通信行業:XO Communications通過使用IBM SPSS預測分析軟件,減少了將近一半的客戶流失率。XO現在可以預測客戶的行為,發現行為趨勢,并找出存在缺陷的環節,從而幫助公司及時采取措施,保留客戶。此外,IBM新的Netezza網絡分析加速器,將通過提供單個端到端網絡、服務、客戶分析視圖的可擴展平臺,幫助通信企業制定更科學、合理決策。電信業者透過數以千萬計的客戶資料,能分析出多種使用者行為和趨勢,賣給需要的企業,這是全新的資料經濟。中國移動通過大數據分析,對企業運營的全業務進行針對性的監控、預警、跟蹤。系統在第一時間自動捕捉市場變化,再以最快捷的方式推送給指定負責人,使他在最短時間內獲知市場行情。
2.2 商業運營:辛辛那提動物園使用了Cognos,為iPad提供了單一視圖查看管理即時訪問的游客和商務信息的服務。借此,動物園可以獲得新的收入來源和提高營收,并根據這些信息及時調整營銷政策。數據收集和分析工具能夠幫助銀行設立最佳網點,確定最好的網點位置,幫助這個銀行更好地運作業務,推動業務的成長。
3 企業信息解決方案在大數據時代的應用
企業信息管理軟件廣泛應用于解決欺詐偵測、雇員流動、客戶獲取與維持、網絡銷售、市場細分、風險分析、親和性分析、客戶滿意度、破產預測和投資組合分析等多樣化問題。根據大數據時代的企業挖掘的特征,提出了數據挖掘的SEMMA方法論――在SAS/EM環境中,數據挖掘過程被劃分為Sample、Explore、Modify、Model、Assess這五個階段,簡記為SEMMA:
3.1 Sample 抽取一些代表性的樣本數據集(通常為訓練集、驗證集和測試集)。樣本容量的選擇標準為:包含足夠的重要信息,同時也要便于分析操作。該步驟涉及的處理工具為:數據導入、合并、粘貼、過濾以及統計抽樣方法。
3.2 Explore 通過考察關聯性、趨勢性以及異常值的方式來探索數據,增進對于數據的認識。該步驟涉及的工具為:統計報告、視圖探索、變量選擇以及變量聚類等方法。
3.3 Modify 以模型選擇為目標,通過創建、選擇以及轉換變量的方式來修改數據集。該步驟涉及工具為:變量轉換、缺失處理、重新編碼以及數據分箱等。
3.4 Model 為了獲得可靠的預測結果,我們需要借助于分析工具來訓練統計模型或者機器學習模型。該步驟涉及技術為:線性及邏輯回歸、決策樹、神經網絡、偏最小二乘法、LARS及LASSO、K近鄰法以及其他用戶(包括非SAS用戶)的模型算法。
3.5 Assess 評估數據挖掘結果的有效性和可靠性。涉及技術為:比較模型及計算新的擬合統計量、臨界分析、決策支持、報告生成、評分代碼管理等。數據挖掘者可能不會使用全部SEMMA分析步驟。然而,在獲得滿意結果之前,可能需要多次重復其中部分或者全部步驟。
在完成SEMMA步驟后,可將從優選模型中獲取的評分公式應用于(可能不含目標變量的)新數據。將優選公式應用于新數據,這是大多數數據挖掘問題的目標。此外,先進的可視化工具使得用戶能在多維直方圖中快速、輕松地查閱大量數據并以圖形化方式比較模擬結果。SAS/EM包括了一些非同尋常的工具,比如:能用來產生數據挖掘流程圖的完整評分代碼(SAS、C以及Java代碼)的工具,以及交換式進行新數據評分計算和考察執行結果的工具。
如果您將優選模型注冊進入SAS元數據服務器,便可以讓SAS/EG和SAS/DI Studio的用戶分享您的模型,從而將優選模型的評分代碼整合進入工作報告和生產流程之中。SAS模型管理系統,通過提供了開發、測試和生產系列環境的項目管理結構,進一步補充了數據挖掘過程,實現了與SAS/EM的無縫聯接。
在SAS/EM環境中,您可以從SEMMA工具欄上拖放節點進入工作區的工藝流程圖中,這種流程圖驅動著整個數據挖掘過程。SAS/EM的圖形用戶界面(GUI)是按照這樣的思路來設計的:一方面,掌握少量統計知識的商務分析者可以瀏覽數據挖掘過程的技術方法;另一方面,具備數量分析技術的專家可以用微調方式深入探索每一個分析節點。
4 結束語
在近十年時間里,數據采集、存儲和數據分析技術飛速發展,大大降低了數據儲存和處理的成本,一個大數據時代逐漸展現在我們的面前。大數據革新性地將海量數據處理變為可能,并且大幅降低了成本,使得越來越多跨專業學科的人投入到大數據的開發應用中來。
參考文獻:
[1]薛志文.淺析計算機網絡技術及其發展趨勢[J].信息與電腦,2009.
[2]張帆,朱國仲.計算機網絡技術發展綜述[J].光盤技術,2007.
[3]孫雅珍.計算機網絡技術及其應用[J].東北水利水電,1994.
[4]史萍.計算機網絡技術的發展及展望[J].五邑大學學報,1999.
[5]桑新民.步入信息時代的學習理論與實踐[M].中央廣播大學出版社,2000.
[6]張浩,郭燦.數據可視化技術應用趨勢與分類研究[J].軟件導刊.
[7]王丹.數字城市與城市地理信息產業化――機遇與挑戰[J].遙感信息,2000(02).
[8]楊鳳霞.淺析Excel 2000對數據的安全管理[J].湖北商業高等專科學校學報,2001(01).
計算機與大數據的相關論文篇三
淺談利用大數據推進計算機審計的策略
[摘要]社會發展以及時代更新,在該種環境背景下大數據風潮席卷全球,尤其是在進入新時期之后數據方面處理技術更加成熟,各領域行業對此也給予了較高的關注,針對當前計算機審計(英文簡稱CAT)而言要想加速其發展腳步并將其質量拔高就需要結合大數據,依托于大數據實現長足發展,本文基于此就大數據于CAT影響進行著手分析,之后探討依托于大數據良好推進CAT,以期為后續關于CAT方面研究提供理論上參考依據。
[關鍵詞]大數據 計算機審計 影響
前言:相較于網絡時代而言大數據風潮一方面提供了共享化以及開放化、深層次性資源,另一方面也促使信息管理具備精準性以及高效性,走進新時期CAT應該融合于大數據風潮中,相應CAT人員也需要積極應對大數據帶了的機遇和挑戰,正面CAT工作,進而促使CAT緊跟時代腳步。
一、初探大數據于CAT影響
1.1影響之機遇
大數據于CAT影響體現在為CAT帶來了較大發展機遇,具體來講,信息技術的更新以及其質量的提升促使數據方面處理技術受到了眾多領域行業的喜愛,當前在數據技術推廣普及階段中呈現三大變化趨勢:其一是大眾工作生活中涉及的數據開始由以往的樣本數據實際轉化為全數據。其二是全數據產生促使不同數據間具備復雜內部關系,而該種復雜關系從很大程度上也推動工作效率以及數據精準性日漸提升,尤其是數據間轉化關系等更為清晰明了。其三是大眾在當前處理數據環節中更加關注數據之間關系研究,相較于以往僅僅關注數據因果有了較大進步?;谏鲜鋈笞兓厔荩采羁痰拇碇蟊妼τ跀祿幚淼膽B度改變,尤其是在當下海量數據生成背景下,人工審計具備較強滯后性,只有依托于大數據并發揮其優勢才能真正滿足大眾需求,而這也是大數據對CAT帶來的重要發展機遇,更是促進CAT在新時期得以穩定發展重要手段。
1.2影響之挑戰
大數據于CAT影響還體現在為CAT帶來一定挑戰,具體來講,審計評估實際工作質量優劣依托于其中數據質量,數據具備的高質量則集中在可靠真實以及內容詳細和相應信息準確三方面,而在CAT實際工作環節中常常由于外界環境以及人為因素導致數據質量較低,如數據方面人為隨意修改刪除等等,而這些均是大數據環境背景下需要嚴格把控的重點工作內容。
二、探析依托于大數據良好推進CAT措施
2.1數據質量的有效保障
依托于大數據良好推進CAT措施集中在數據質量有效保障上,對數據質量予以有效保障需要從兩方面入手,其一是把控電子數據有效存儲,簡單來講就是信息存儲,對電子信息進行定期檢查,監督數據實際傳輸,對信息系統予以有效確認以及評估和相應的測試等等,進而將不合理數據及時發現并找出信息系統不可靠不準確地方;其二是把控電子數據采集,通常電子數據具備多樣化采集方式,如將審計單位相應數據庫直接連接采集庫進而實現數據采集,該種直接采集需要備份初始傳輸數據,避免數據采集之后相關人員隨意修改,更加可以與審計單位進行數據采集真實性承諾書簽訂等等,最終通過電子數據方面采集以及存儲兩大內容把控促使數據質量更高,從而推動CAT發展。
2.2公共數據平臺的建立
依托于大數據良好推進CAT措施還集中在公共數據平臺的建立,建立公共化分析平臺一方面能夠將所有采集的相關數據予以集中化管理存儲,更能夠予以多角度全方面有效分析;另一方面也能夠推動CAT作業相關標準予以良好執行。如果將分析模型看作是CAT作業標準以及相應的核心技術,則公共分析平臺則是標準執行和相應技術實現關鍵載體。依托于公共數據平臺不僅能夠將基礎的CAT工作實現便捷化以及統一化,而且深層次的實質研究有利于CAT數據處理的高速性以及高效性,最終為推動CAT發展起到重要影響作用。
2.3審計人員的強化培訓
依托于大數據良好推進CAT措施除了集中在上述兩方面之外,還集中在審計人員的強化培訓上,具體來講,培訓重點關注審計工作于計算機上的具體操作以及操作重點難點,可以構建統一培訓平臺,在該培訓平臺中予以多元化資料的分享,聘請高技能豐富經驗人士予以平臺授課,提供專業技能知識溝通互動等等機會,最終通過強化培訓提升審計人員綜合素質,更加推動CAT未來發展。
三、結論
綜上分析可知,當前大數據環境背景下CAT需要將日常工作予以不斷調整,依托于大數據促使審計人員得以素質提升,并利用公共數據平臺建立和相應的數據質量保障促使CAT工作更加高效,而本文對依托于大數據良好推進CAT進行研究旨在為未來CAT優化發展獻出自己的一份研究力量。
猜你喜歡: