• <output id="aynwq"><form id="aynwq"><code id="aynwq"></code></form></output>

    <mark id="aynwq"><option id="aynwq"></option></mark>
  • <mark id="aynwq"><option id="aynwq"></option></mark><label id="aynwq"><dl id="aynwq"></dl></label>
  • 學習啦 > 學習方法 > 通用學習方法 > 學習經驗 >

    高中數學立體幾何知識點

    時間: 維維20 分享

    立體幾何這類題需要比較強的空間思維想象力,所以對部分同學來說也是挺頭疼的類型題。那么下面小編給大家分享一些高中數學立體幾何知識點,希望能夠幫助大家!

    高中數學立體幾何知識點

    高中數學立體幾何知識1

    柱、錐、臺、球的結構特征

    (1)棱柱:

    定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

    分類:以底面多邊形的邊數作為分類的標準分為三棱柱、四棱柱、五棱柱等。

    表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱

    幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。

    (2)棱錐

    定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體

    分類:以底面多邊形的邊數作為分類的標準分為三棱錐、四棱錐、五棱錐等

    表示:用各頂點字母,如五棱錐

    幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

    (3)棱臺:

    定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分

    分類:以底面多邊形的邊數作為分類的標準分為三棱態、四棱臺、五棱臺等

    表示:用各頂點字母,如五棱臺

    幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點

    (4)圓柱:

    定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體

    幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

    (5)圓錐:

    定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體

    幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面展開圖是一個扇形。

    (6)圓臺:

    定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

    幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面展開圖是一個弓形。

    (7)球體:

    定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

    幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

    2、空間幾何體的三視圖

    定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖(從上向下)

    注:正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;

    俯視圖反映了物體左右、前后的位置關系,即反映了物體的長度和寬度;

    側視圖反映了物體上下、前后的位置關系,即反映了物體的高度和寬度。

    3、空間幾何體的直觀圖——斜二測畫法

    斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;

    ②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

    高中數學立體幾何知識2

    空間幾何體結構

    1.空間結合體:如果我們只考慮物體占用空間部分的形狀和大小,而不考慮其它因素,那么由這些物體抽象出來的空間圖形,就叫做空間幾何體。

    2.棱柱的結構特征:有兩個面互相平行,其余各面都是四邊形,每相鄰兩個四邊形的公共邊互相平行,由這些面圍成的圖形叫做棱柱。

    底面:棱柱中,兩個相互平行的面,叫做棱柱的底面,簡稱底。底面是幾邊形就叫做幾棱柱。

    側面:棱柱中除底面的各個面。

    側棱:相鄰側面的公共邊叫做棱柱的側棱。

    頂點:側面與底面的公共頂點叫做棱柱的頂點。

    棱柱的表示:用表示底面的各頂點的字母表示。 如:六棱柱表示為ABCDEF-A’B’C’D’E’F’

    3.棱錐的結構特征:有一個面是多邊形,其余各面都是三角形,并且這些三角形有一個公共定點,由這些面所圍成的多面體叫做棱錐.

    4.圓柱的結構特征:以矩形的一邊所在直線為旋轉軸,其余邊旋轉形成的面所圍成的旋轉體叫做圓柱。

    圓柱的軸:旋轉軸叫做圓柱的軸。

    圓柱的底面:垂直于軸的邊旋轉而成的圓面叫做圓柱的底面。

    圓柱的側面:平行于軸的邊旋轉而成的曲面叫做圓柱的側面。

    圓柱側面的母線:無論旋轉到什么位置,不垂直于軸的邊都叫做圓柱側面的母線。

    圓柱用表示它的軸的字母表示.如:圓柱O’O

    注:棱柱與圓柱統稱為柱體

    5.圓錐的結構特征:以直角三角形的一條直角邊所在直線為旋轉軸, 兩余邊旋轉形成的面所圍成的旋轉體叫做圓錐。

    軸:作為旋轉軸的直角邊叫做圓錐的軸。

    底面:另外一條直角邊旋轉形成的圓面叫做圓錐的底面。

    側面:直角三角形斜邊旋轉形成的曲面叫做圓錐的側面。

    頂點:作為旋轉軸的直角邊與斜邊的交點

    母線:無論旋轉到什么位置,直角三角形的斜邊叫做圓錐的母線。

    圓錐可以用它的軸來表示。如:圓錐SO

    注:棱錐與圓錐統稱為錐體

    6.棱臺和圓臺的結構特征

    (1)棱臺的結構特征:用一個平行于棱錐底面的平面去截棱錐,底面與截面之間的部分是棱臺.

    下底面和上底面:原棱錐的底面和截面 分別叫做棱臺的下底面和上底面。

    側面:原棱錐的側面也叫做棱臺的側面(截后剩余部分)。

    側棱:原棱錐的側棱也叫棱臺的側棱(截后剩余部分)。

    頂點:上底面和側面,下底面和側面的公共點叫做棱臺的頂點。

    棱臺的表示:用表示底面的各頂點的字母表示。 如:棱臺ABCD-A’B’C’D’

    底面是三角形,四邊形,五邊形----的棱臺分別叫三棱臺,四棱臺,五棱臺---

    (2)圓臺的結構特征:用一個平行于圓錐底面的平面去截圓錐,底面與截面之間的部分是圓臺.

    圓臺的軸,底面,側面,母線與圓錐相似

    注:棱臺與圓臺統稱為臺體。

    7.球的結構特征:以半圓的直徑所在的直線為旋轉軸,半圓面旋轉一周形成的幾何體叫做球體。

    球心:半圓的圓心叫做球的球心。

    半徑:半圓的半徑叫做球的半徑。

    直徑:半圓的直徑叫做球的直徑。

    球的表示:用球心字母表示。如:球O

    注意:1.多面體: 若干個平面多邊形圍成的幾何體

    2.旋轉體: 由一個平面繞它所在平面內的一條定直線旋轉所形成的封閉幾何體

    高中數學立體幾何知識3

    幾何體的三視圖和直觀圖

    1.空間幾何體的三視圖:

    定義:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右);俯視圖(從上向下)。

    注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬帶;側視圖反映了物體的高度和寬帶。

    球的三視圖都是圓;長方體的三視圖都是矩形。

    2.空間幾何體的直觀圖——斜二測畫法

    (1)在已知圖形中取互相垂直的x軸和y軸,兩軸相較于點O。畫直觀圖時,把它們畫成對應的x’軸和y’軸,兩軸交于點O’,且使<x’o’y’=45度(或135度),它們確定的平面表示水平面。< p="">

    (2)已知圖形中平行于x軸或y軸的線段,在直觀圖中分別畫呈平行于x’軸或y’軸的線段。

    (3)已知圖形中平行于x軸的線段,在直觀圖中保持原長度不變,平行于y軸的線段,長度為原來的一半。

    (4)z軸方向的長度不變

    高中數學立體幾何知識4

    1、柱、錐、臺、球的結構特征

    (1)棱柱:

    幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。

    (2)棱錐

    幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到

    截面距離與高的比的平方。

    (3)棱臺:

    幾何特征:①上下底面是相似的平行多邊形 ②側面是梯形 ③側棱交于原棱錐的頂點

    (4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成

    幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖

    是一個矩形。

    (5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成

    幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面展開圖是一個扇形。

    (6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉軸,旋轉一周所成

    幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面展開圖是一個弓形。

    (7)球體:定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體 幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

    數學知識點2、空間幾何體的三視圖

    定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、 俯視圖(從上向下)

    注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側視圖反映了物體的高度和寬度。

    數學知識點3、空間幾何體的直觀圖——斜二測畫法

    斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;

    ②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

    平面

    通常用一個平行四邊形來表示.

    平面常用希臘字母α、β、γ…或拉丁字母M、N、P來表示,也可用表示平行四邊形的兩個相對頂點字母表示,如平面AC.

    在立體幾何中,大寫字母A,B,C,…表示點,小寫字母,a,b,c,…l,m,n,…表示直線,且把直線和平面看成點的集合,因而能借用集合論中的符號表示它們之間的關系,例如:

    a) A∈l—點A在直線l上;Aα—點A不在平面α內;

    b) lα—直線l在平面α內;

    c) aα—直線a不在平面α內;

    d) l∩m=A—直線l與直線m相交于A點;

    e) α∩l=A—平面α與直線l交于A點;

    f) α∩β=l—平面α與平面β相交于直線l.

    平面的基本性質

    公理1如果一條直線上的兩點在一個平面內,那么這條直線上所有的點都在這個平面內.

    公理2如果兩個平面有一個公共點,那么它們有且只有一條通過這個點的公共直線.

    公理3經過不在同一直線上的三個點,有且只有一個平面.

    根據上面的公理,可得以下推論.

    推論1經過一條直線和這條直線外一點,有且只有一個平面.

    推論2經過兩條相交直線,有且只有一個平面.

    推論3經過兩條平行直線,有且只有一個平面.

    公理4平行于同一條直線的兩條直線互相平行

    高中數學立體幾何知識點相關文章:

    高三年級數學立體幾何知識點

    高二數學立體幾何考點解析

    高考文科數學立體幾何解題技巧

    高中數學必修2空間幾何體知識點歸納總結

    高二數學立體幾何知識與學習方法

    高一數學知識點總結

    高中數學立體幾何解題方法

    值得借鑒的高三數學復習方法

    理高二數學學哪些幾何?復習建議

    906545 主站蜘蛛池模板: 成人永久福利免费观看| 狠狠色噜噜狠狠狠狠色吗综合| 日本www高清| 啦啦啦资源在线观看视频| 一二三四在线观看免费高清视频| 男人j进女人p免费视频播放| 国产网红在线观看| 亚洲av永久无码嘿嘿嘿| 野花香社区在线视频观看播放 | 谷雨生的视频vk| 性猛交╳xxx乱大交| 亚洲精选在线观看| 69成人免费视频| 日本VA欧美VA精品发布| 初女破苞国语在线观看免费| 97人洗澡从澡人人爽人人模| 欧洲成人午夜精品无码区久久| 国产在线高清精品二区色五郎| 一级毛片大全免费播放下载| 欧美金发白嫩在线播放| 国产成人女人毛片视频在线| 中文字幕乱码中文字幕| 波多野结衣中文字幕电影| 国产成人精品免费视频大全| 中文字幕julia中文字幕| 97色偷偷色噜噜狠狠爱网站97| 欧美人与zoxxxx另类| 国产一区二区不卡老阿姨| japanese国产在线观看| 欧美一级日韩一级| 国产91精品在线| 91香蕉视频黄色| 日本影片和韩国影片网站推荐| 免费黄色网址在线观看| h视频免费在线| 成人无号精品一区二区三区| 亚洲日韩亚洲另类激情文学| 草草影院www色欧美极品| 在线天堂bt种子| 久久久亚洲欧洲日产国码aⅴ| 男人j进女人j啪啪无遮挡动态|