五年級上冊數學期中試卷及答案
借助試題可以對一個人進行全方位的考核。那么五年級上冊數學期中試卷怎么做呢?以下是小編整理的一些五年級上冊數學期中試卷及答案,僅供參考。
五年級上冊數學期中試卷
一、填空題(第2小題5分,其余每空1分,共23分)
1.一輛汽車向南行駛了50千米記作“-90千米”,如果記作“+20千米”表示這輛汽車向( )行駛了( )千米;
2.4角=( )元 0.02千米=( )米 1.5噸=( )千克
2.3平方分米=( )平方厘米 4.09米=( )米( )厘米
3.7.983是( )位小數,這個小數中的8表示( ),把這個小數精確到百分位約是( ),保留一位小數約是( );
4.把3208000000改寫成用“萬”作單位的數是( )萬;省略“億”后面的尾數約是( )億;
5.將5.9寫成計數單位是0.01的數是( ),將4.0600化簡后是( );
6.比3.5米少0.5米的是( ),7.15比( )少0.5,( )比5少0.02;
7.若干個△和○按△○○△△○○△△○○△…的規律排列,那么第35個圖形是( );在這35個圖形中,○有( )個;
8.一個等腰直角三角形的兩條直角邊長6厘米,這個三角形的面積是( )平方厘米;如果它的斜邊長9厘米,那么斜邊上的`高是( )厘米;
9.南莫小學高年級同學組織了一場象棋友誼賽,共有6名同學參加了比賽,根據比賽規則,每兩名同學之間都要進行一場比賽,那么,他們一共要賽( )場。
二、判斷題(每小題1分,共5分)。
1.在+3和-2中,+3更接近0。………………………………………… ( )
2.0.2+0.8-0.2+0.8=0…………………………………………………… ( )
3.三角形的面積等于平行四邊形面積的一半。…………………………( )
4.小數不一定都比整數小。………………………………………………( )
5.一個兩位小數的近似數是4.3,這個小數最大是4.29。……………( )
三、選擇題(每小題1分,共5分)。
1.大于0.1而小于0.3的一位小數有( )。
① 0個 ② 1個 ③ 9個 ④ 無數個
2.小紅按1顆黃珠,1顆藍珠,2顆紅珠,1顆白珠的順序,穿一串珠子,第47顆珠子是( )
①黃珠 ②藍珠 ③紅珠 ④白珠
3.跟1.28×43結果相等的算式是( )
① 128×4.3 ② 0.128×43 ③ 12.8×0.43 ④ 128×0.43
4.把一個平行四邊形剪拼成一個長方形后,( )
①面積不變,周長變了。 ②面積變了,周長不變。
③面積和周長都變了。 ④面積和周長都沒變。
四、計算題(共37分)。
1.直接寫得數(每小題0.5分,共7分)。
⑴0.89-0.25= 1-0.08= 0.048+0.52= 1.5×2= 9.8-8=
0.3+0.67= 3.9+1= 0.081×10= 0.75×100= 20-3.7-7.3=
⑵根據16×14=224,很快寫出下面各題的積。
1.6×14= 0.16×14= 0.016×14= 160×1.4=
2.列豎式計算(每小題2分)。
12.7+4.32 2-1.92 21.5-20.83
8×0.72 0.312×12 25×1.08
3.用簡便方法計算下面各題(每小題3分)。
14.5+9.56+5.5 3.94-2.48-0.52 7.85+0.34+0.35+1.56
五、解決問題(第二小題6分,其余每小題5分,共26分)。
1.一只蝸牛從10米深的井底向上爬。第一天白天向上爬3米,晚上掉下1米;第二天向上爬4米,晚上掉下2米;第三天白天向上爬6米,晚上掉下4米……
⑴請將蝸牛每天爬行的情況用正負數在一表中表示出來。
第一天第二天第三天
白天晚上白天晚上白天晚上
( )米( )米( )米( )米( )米( )米
⑵如果蝸牛每天白天都向上爬3米,晚上都掉下來2米,那么,蝸牛幾天能爬出井口?
2.小明帶3張10元人民幣去南莫蘇果超市購物,超市部分商品價格如下表:
剪刀書包魔方筆記本鋼筆直尺
5.5元17.6元5.8元11.9元6.5元0.5元
⑴如果買一個書包和一本筆記本,小明還剩多少元?(3分)
⑵小明最多可以買幾種不同的商品?(請簡要寫出你的思考過程)(3分)
3.南莫繅絲廠前年用煤23.02噸,去年比前年節約用煤0.78噸,今年估計要比前年節約用煤1.2噸,今年估計用煤多少噸?
4.為了迎接學校田徑運動會,南莫小學五⑴班同學用一塊長5分米、寬4分米的紅色彩紙制作底和高都是10厘米三角形小紅旗,最多可以做多少面這樣的小紅旗?
五年級上冊數學期中試卷答案
一、填空題
1.北 20
2.0.4 20 1500 230 4 9
3.三 8個0.01 7.98 8.0
4.320800萬 32億
5.5.90 4.06
6.3米 7.65 4.98;
7.○ 18
8.18 4
9.15
二、判斷題
×,×,×,√,×
三、選擇題
②,②,④,①,④,
四、計算題(共37分)。
1.直接寫得數(每小題0.5分,共7分)。
⑴0.64 0.92 0.568 3 1.8
0.97 4.9 0.81 75 9
⑵22.4 2.24 0.224 224
2.17.02 0.08 0.76 5.76 3.744 27
3.29.56 0.94 10
4.計算下面圖形的面積(每小題3分)。 單位:厘米
6×3÷2=9(平方厘米) (5+4)×2÷2=9(平方厘米) 5×4÷2=10(平方厘米)
五、解決問題(第二小題6分,其余每小題5分,共26分)。
1.⑴ +3 -1 +4 -2 +6 -4 ⑵ 8天
2.⑴ 10__3=30(元) 17.6+11.9=29.5(元) 30-29.5=0.5(元)或列綜合算式解答。
⑵4種 思考過程略
3.23.02- 1.2=21.82(噸)
4.5分米=50厘米 4分米=40厘米
10×10÷2=50(平方厘米) 50×40=2000(平方厘米) 2000÷50=40(面)
5.1 3 2 5 4
2.05 - 1.90=0.15(分)
五年級數學上冊知識點
第一單元 小數除法
1、除數是整數的小數除法計算法則:除數是整數的小數除法,按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;如果除到被除數的末尾仍有余數,就在余數后面添0再繼續除。
2、除數是小數的小數除法計算法則:除數是小數的除法,先移動除數的小數點,使它變成整數;除數的小數點向右移動幾位,被除數的小數點也向右移動幾位(位數不夠的,在被除數末尾用0補足),然后按照除數是整數的小數除法進行計算。
3、連除的算式可以寫成被除數除以幾個數的積,但除以幾個數的積時,必須給這個相乘的式子加上小括號。
4、 在小數除法中的發現:
①當除數不為0時,除數大于1時,商小于被除數。如:3.5÷5=0.7
②當除數不為0時,除數小于1時,商大于被除數。如:3.5÷0.5=7
當除數不為0時,除數等于1時,商等于被除數。如:3.5÷1=3.5
5、小數除法的驗算方法:
①商×除數=被除數(通用)
②被除數÷商=除數
6、商的近似數:根據要求要保留的小數位數,決定商要除出幾位小數,再根據“四舍五入”法保留一定的小數位數,求出商的近似數。例如:要求保留一位小數的,商除到第二位小數可停下來;要求保留兩位小數的,商除到第三位小數停下來……如此類推。
7、循環小數:
A、小數部分的位數是有限的小數,叫做有限小數。如,0.37、1.4135等。
B、小數部分的位數是無限的小數,叫做無限小數。如5.3… 7.145145…等。
C、一個數的小數部分,從某位起,一個數字或者幾個數字依次不斷重復出現,這樣的小數叫做循環小數。(如5.3… 3.12323… 5.7171…)
D、一個循環小數的小數部分,依次不斷重復的數字,叫做小數的循環節。(如5.333… 的循環節是3, 4.6767…的循環節是67, 6.9258258…的循環節是258)
E、用簡便方法寫循環小數的方法:
①只寫一個循環節,并在這個循環節的首位和末位上面記一個小圓點
②例如:只有一個數字循環節的,就在這個數字上面記一個小圓點,5.333…寫作5.3 ;有兩位小數循環的,就在這兩位數字上面,記上小圓點,7.4343…寫作7.4 3 ;有三位或以上小數循環的,在首位和末位記上小數點,10.732732…寫作10.732
8、除法中的變化規律: ①商不變性質:被除數和除數同時擴大或縮小相同的倍數( 0除外),商不變。②除數不變,被除數擴大,商隨著擴大。 ③被除數不變,除數縮小,商擴大。
9、小數的四則混合運算順序與整數四則混合運算的運算順序相同。
第二單元 軸對稱和平移
軸對稱:
1.軸對稱圖形:如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形就是軸對稱圖形,那條直線就叫做對稱軸。兩圖形重合時互相重合的點叫做對應點,也叫對稱點。
2.軸對稱圖形的性質:對應點到對稱軸的距離相等,對應點連線垂直于對稱軸。
3.軸對稱圖形具有對稱性。
4軸對稱圖形的法:
(1)找出所給圖形的關鍵點,如圖形的頂點、相交點、端點等;
(2)數出或量出圖形關鍵點到對稱軸的距離;
(3)在對稱軸的另一側找出關鍵點的對稱點;
(4)按照所給圖形的順序連接各點,就畫出所給圖形的軸對稱圖形。
平移:
1.平移的定義:在平面內,將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。
2.平移的基本性質:
(1)平移不改變圖形的形狀和大小,只改變圖形的位置。
(2)經過平移,對應線段,對應角分別相等;對應點所連的線段平行且相等。
3.平移圖形的畫法:
(1)確定平移的方向與距離。
(2)將關鍵點按所需方向平移所需距離。
(3)按原來圖形的連接方式依次連接各對應點。
4、平移幾格并不是指原圖形和平移后的新圖形之間的空格數,而是指原圖形的關鍵點平移的格數。
設計圖案的基本方法:平移、對稱
1.運用平移設計圖案的方法:
(1)選好基本圖案;
(2)根據所選的基本圖案確定平移的格數和方向;
(3)平移,描出對應點;
(4)按順序連接對應點
2.運用對稱設計圖案的方法:
(1)先選好基本圖案;
(2)依據基本圖案的特點定好對稱軸;
(3)選好關鍵點,并描出關鍵點的對應點;
(4)按順序連接對應點,畫出基本圖形的對稱圖形
第三單元 倍數和因數
像0,1,2,3,4,5,6,…這樣的數是自然數。
像-3,-2,-1,0,1,2,3,…這樣的數是整數。
我們只在自然數(零除外)范圍內研究倍數和因數。
倍數與因數是相互依存的關系,要說清誰是誰的倍數,誰是誰的因數。
補充知識點:一個數的倍數的個數是無限的,因數個數是有限的。
一個數最小的因數是1,最大的因數是它本身;一個數最小的倍數是它本身,沒有最大的倍數。
(一)2,5的倍數的特征
2的倍數的特征: 個位上是0,2,4,6,8的數是2的倍數。
5的倍數的特征: 個位上是0或5的數是5的倍數。
偶數和奇數的定義: 是2的倍數的數叫偶數,不是2的倍數的數叫奇數。
補充知識點:
既是2的倍數,又是5的倍數的特征:個位上是0的數既是2的倍數,又是5的倍數。(既是2的倍數,又是5的倍數都是整十數,最小的兩位數是10,最小的三位數是100)
(二)3的倍數的特征
一個數各個數位上的數字的和是3的倍數,這個數就是3的倍數。
同時是2和3的倍數的特征: 個位上的數是0,2,4,6,8,并且各個數位上的數字的和是3的倍數的數,既是2的倍數,又是3的倍數。(同時是2和3的倍數,一定是6的倍數,最小的是6。)
同時是3和5的倍數的特征: 個位上的數是0或5,并且各個數位上的數字的和是3的倍數的數,既是3的倍數,又是5的倍數。(同時是3和5的倍數,一定是15的倍數,最小的是15。)
同時是2,3和5的倍數的特征: 個位上的數是0,并且各個數位上的數字的和是3的倍數的數,既是2和5的倍數,又是3的倍數。(同時是2,3和5的倍數,一定是30的倍數,最小的兩位數是30,最小的三位數是120)
9的倍數的特征:一個數各個數位上的數字的和是9的倍數,這個數就是9的倍數,它也一定是3的倍數。
㈣找因數
在1~100的自然數中,找出某個自然數的所有因數。方法:1、運用乘法算式,思考:哪兩個數相乘等于這個自然數,那么這兩個乘數就是這個數的因數。2、運用除法算式,思考這個數除以幾能整除,那么除數和商就是這個數的因數。
補充知識點:
一個數的因數的個數是有限的。其中最小的因數是1,最大的因數是它本身。找一個數的因數,通常用列舉的方法,可一對一對的寫出來,也可按從小到大的順序來寫。
㈤找質數
一個數只有1和它本身兩個因數,這個數叫作質數。
一個數除了1和它本身以外還有別的因數,這個數叫作合數。
1既不是質數也不是合數。
判斷一個數是質數還是合數的方法:
一般來說,首先可以用“2,5,3的倍數的特征”判斷這個數是否有因數2,5,3;如果還無法判斷,則可以用7,11等比較小的質數去試除,看有沒有因數7,11等。只要找到一個1和它本身以外的因數,就能肯定這個數是合數。如果除了1和它本身找不到其他因數,這個數就是質數。
㈥數的奇偶性
運用“列表”“畫示意圖”等方法發現規律:
小船最初在南岸,從南岸駛向北岸,再從北岸駛回南岸,不斷往返。通過“列表”“畫示意圖”的方法會發現“奇數次在北岸,偶數次在南岸”的規律。
通過計算發現奇數、偶數相加奇偶性變化的規律:
偶數+偶數=偶數 奇數+奇數=偶數 偶數+奇數=奇數
偶數-偶數=偶數 奇數-奇數=偶數 偶數-奇數=奇數
奇數-偶數=奇數
偶數×偶數=偶數 偶數×奇數=偶數 奇數×奇數=奇數
第四單元 多邊形面積
㈠比較圖形的面積
借助方格紙,能直接判斷圖形面積的大小。
平面圖形面積大小的比較有多種方法:
根據圖形面積的大小,可以直接進行比較;可以借助參照物進行比較;可以運用重疊的方法進行比較;借助方格,利用數方格的的方法進行比較;直接計算面積后再進行比較等。
圖形面積相同,其形狀可以是不同的。
補充知識點:
確定一個圖形面積的大小,不僅是根據圖形的形狀,更重要的是根據圖形所占格子的多少來確定。
㈡地毯上的圖形面積
知識點:
根據地毯上所給圖案探求不規則圖案面積的計算方法。
直接通過數方格的方法,得出答案的面積。
將圖案進行“化整為零”式的計算,即根據圖案的特點,將整體的圖案分割為若干個相同面積的小圖案,通過求小圖案的面積,得出整個圖案的面積。
采用“大面積減小面積”的方法,即通過計算相關圖形的面積,得到所求的面積。
補充知識點:
在解決問題時,策略和方法是多種多樣的。
㈢動手做
認識平行四邊形、三角形與梯形的底和高。
從平行四邊形一邊的某一點到對邊畫垂直線段,這條垂直線段就是平行四邊形的高,這條對邊是平行四邊形的底。
三角形的一個頂點到對邊的垂直線段是三角形的高,這條對邊是三角形的底。
從梯形的兩條平行線中的一條上的某一點到對邊畫垂直線段,這條垂直線段就是梯形的高,這條對邊就是梯形的底。
高和底的關系是對應的。
用三角板畫出平行四邊形的高的方法:
把三角板的一條直角邊與平行四邊形的一條邊重合,讓三角板的另一條直角邊過對邊的某一點。從這一點沿著三角板的另一條直角邊向它的對邊畫垂線,這條垂線(從點到垂足)就是平行四邊形一條邊上的高。
注意:從一條邊上的任意一點可以向它的對邊畫高,也可以從另一條邊上的任意一點向它的對邊畫高。
用三角板畫出三角形的高的方法:
把三角板的一條直角邊對準三角形的一個頂點,另一條直角邊與這個頂點的對邊重合。從這個頂點沿著三角板的另一條直角邊向它的對邊畫垂線,這條垂線(從頂點到垂足)就是三角形形一條邊上的高。
用三角板畫梯形的高的方法:
用同樣的方法,畫出梯形兩條平行線之間的垂直線段,就是梯形的高。
(一)平行四邊形的面積
平行四邊形的面積=拼成的長方形的面積
長方形的長就是平行四邊形的底;長方形的寬就是平行四邊形的高。
因此:平行四邊形面積=底×高
如果用S表示平行四邊形的面積,用a和h分別表示平行四邊形的底和高,那么,平行四邊形的面積公式可以寫成:S=a h
補充知識點:
當平行四邊形的底和高相同時,其面積也是相同的。
(二)三角形的面積
三角形面積=兩個相同三角形拼成的平行四邊形的面積÷2
三角形的底和高,也就是平行四邊形的底和高。
因此:三角形面積=平行四邊形的面積÷2=底×高÷2
如果用S表示三角形的面積,用a和h分別表示三角形的底和高,那么,三角形的面積公式可以寫成:S=a h÷2
補充知識點:
決定三角形面積的大小的因素不是圖形的形狀,而是三角形的底與高的長度,只要底和高相同,不同形狀的三角形的面積也是相同的。
(三)梯形的面積
梯形面積=兩個相同梯形拼成的平行四邊形的面積÷2
梯形的上底與下底的和就是平行四邊形的底,梯形的高就是平行四邊形的高。
因此:梯形面積=平行四邊形面積÷2=底×高÷2=(上底+下底)×高÷2
如果用S表示梯形的面積,用a和b分別表示梯形的上底和下底,用h表示梯形的高,那么,梯形的面積公式可以寫成:S= (a+b)h÷2
補充知識點:
決定梯形面積的大小的因素不是圖形的形狀,而是梯形的上、下底之和與高的長度,只要上下底的和與高相同,不同形狀的梯形的面積也是相同的。
等底等高的三角形的面積相等。
等底等高的平行四邊形的面積相等。
第五單元 分數的意義
㈠分數的再認識
整體“1”的含義:一個物體或一些物體都可以看作一個整體,這個整體可以用自然數“1”來表示,通常叫做整體“1”。
分數的意義:把整體“1”平均分成若干份,其中的一份或幾份,可以用分數表示。分母是幾,整體就被分成了幾份,分子是幾,就表示其中的幾份。
分數對應的“整體”不同,分數所表示的部分的大小或具體數量也不一樣,即分數具有相對性。同一個分數對應的整體大,表示的具體數量就大;對應的整體小,表示的具體數量就小。同一個分數表示的具體數量大,對應的整體就大;表示的具體數量小,對應的整體就小。
㈡(真分數與假分數)
理解真分數、假分數、帶分數的意義。
真分數特點:分子都比分母小;分數值小于1。
假分數特點:分子比分母大,或者分子與分母相等;分數值大于或等于1。
帶分數特點:由整數和真分數兩部分組成的;分數值大于1。
帶分數的讀法: 讀作:二又四分之一。
★補充知識點:
分子是分母倍數的假分數可以化成整數; 分子不是分母倍數的假分數可以化成帶分數。
㈢分數與除法
理解分數與除法的關系:被除數÷除數= (除數不為0)。
分數的分母不能是0。因為在除法中,0不能做除數,因此根據分數與除法的關系,分數中的分母相當于除法中的除數,所以分母也不能是0。可以用分數來表示兩數相除的商。分數的分子相當于除法中的被除數,分母相當于除數,分數線相當于除號,分數的值相當于商。
根據分數與除法的關系把假分數化成帶分數的方法:用分子除以分母,把所得的商寫在帶分數的整數位置上,余數寫在分數部分的分子上,仍用原來的分母作分母。
把帶分數化成假分數的方法:將整數與分母相乘的積加上原來的分子作分子,分母不變。
㈣分數基本性質
分數的分子和分母都乘上或除以相同的數(0除外),分數的大小不變。
分子相當于被除數,分母相當于除數,被除數和除數同時乘或除以相同的數(0除外),商不變。因此分數的分子和分母都乘或除以相同的數(0除外),分數的大小也是不變的。
求一個數是另一個數的幾分之幾:一個數÷另一個數= ,即比較量÷標準量= ,得到的商表示兩個數的關系,沒有單位名稱。
㈤找最大公因數
幾個數公有的因數是這幾個數的公因數,其中最大的一個是它們的最大公因數。
找兩個數的公因數和最大公因數的方法:
列舉法:運用找因數的方法先分別找到兩個數各自的因數,再找出兩個數的因數中相同的因數,這些數就是兩個數的公因數;再看看公因數中最大的是幾,這個數就是兩個數的最大公因數。
補充知識點:
其他找最大公因數的方法:
找兩個數的公因數和最大公因數,可以先找出兩個數中較小的數的因數,再看看這些因數中有哪些也是較大的數的因數,那么這些數就是這兩個數的公因數。其中最大的就是這兩個數的最大公因數。
例如:找15和50的公因數和最大公因數:
可以先找出15的因數:1,3,5,15。再判斷4個數中,哪幾個也是50的因數,只有1和5,1和5就是15和50的公因數。5就是它們的最大公因數。
3、如果兩個數是不同的質數,那么這兩個數的公因數只有1。
4、如果兩個數是連續的自然數(0除外),那么這兩個數的公因數只有1。
5、如果兩個數具有倍數關系,那么較小的數就是這兩個數的最大公因數。
㈥約分
把一個分數的分子、分母同時除以公因數,分數的值不變,這個過程叫做約分。
理解最簡分數的含義:
像 這樣分子、分母公因數只有1了,不能再約分了,這樣的分數是最簡分數。 分子與分母是相鄰的自然數的分數一定是最簡分數;分子分母是兩個不同質數的分數一定是最簡分數;分子是“1”的分數一定是最簡分數。
掌握約分的方法:
約分的方法一般有兩種,一種是用兩個數的公因數一個一個去除,另一種是直接用兩個數的最大公因數去除。
補充知識點:
比較分數大小時,分母相同的、分子相同的可以直接比較,有些時候分子分母都不相同可以采用約分后進行比較的方法。例如: ○
㈦找最小公倍數
兩個數公有的倍數叫做這兩個數的公倍數,其中最小的一個,叫做最小公倍數。
找兩個數的公倍數和最小公倍數的方法:
1、先找出兩個數各自的倍數(限制一定的范圍內),再找出公有的倍數,找出兩個數公有的倍數,看看這些公倍數中最小的是幾,這個數就是兩個數的最小公倍數。
兩個數公倍數的個數是無限的,因此只有最小公倍數沒有最大的公倍數。
補充知識點:
其他找公倍數和最小公倍數的方法:
2、找兩個數的公倍數和最小公倍數,可以先找出兩個數中較大的數的倍數(限制一定的范圍內),再看看這些倍數中有哪些也是較小的數的倍數,那么這些數就是這兩個數的公倍數。其中最小的就是這兩個數的最小公倍數。
例如:找6和9的公倍數和最小公倍數。(50以內)可以先找出9的倍數(50以內)有:9,18,27,36,45,再從這些數中找出6的倍數18,36,18和36就是6和9的公倍數,18是最小公倍數。
3、如果兩個數是不同的質數,那么這兩個數的最小公倍數是兩個數的乘積。
4、如果兩個數是連續的自然數(0除外),那么這兩個數的最小公倍數是兩個數的乘積。
5、如果兩個數具有倍數關系,那么較大的數就是這兩個數的最小公倍數。
6、短除法求最小公倍數
㈧分數的大小
把分母不相同的分數化成和原來分數相等、并且分母相同的分數,這個過程叫作通分。
★通分的兩個要點:和原來分數相等;分母相同。
■分數大小比較:
同分母分數相比較,分子越大分數越大。 同分子分數相比較,分母越小分數越大。
分子分母都不相同的分數相比較的方法:
用通分的方法把分母不相同的分數化成和原來分數相等、并且分母相同的分數,再比較大小。(把兩個分數化成分子相同的分數,再比較大小)
補充知識點:通分一般以最小公倍數作分母。
第六單元 組合圖形的面積
組合圖形面積
知識點:了解組合圖形:有幾個簡單的圖形拼出來的圖形,我們把它們叫做組合圖形。
計算組合圖形的面積的方法是多種多樣的。一般運用的方法是“分割法”和“添補法”。
分割法,即將這個圖形分割成幾個基本的圖形。分割圖形越簡潔,其解題的方法也將越簡單,同時又要考慮分割的圖形與所給條件的關系。
添補法,即通過補上一個簡單的圖形,使整個圖形變成一個大的規則圖形。
探索活動:成長的腳印
知識點:能正確估計不規則圖形面積的大小。
能用數格子的方法,計算不規則圖形的面積。
估計、計算不規則圖形面積的內容主要是以方格圖作為背景進行估計與計算的,所以借助方格圖能幫助建立估計與計算不規則圖形面積的方法。
數方格的方法:滿格記為1,少于半格記為0,大于半格記為1。
嘗試與猜測
雞兔同籠 知識點:運用列表的方法(逐一列表法、跳躍列表法、折中列表法)解決類似于“雞兔同籠”的問題,也可用“方程”來解決。
點陣中的規律 知識點:能在觀察活動中,發現點陣中隱含的規律,體會到圖形與數的聯系。在“點陣中的規律”的活動中,通過觀察前后圖形中點的變化規律,推理出后續圖形中點的數量。
第七單元 可能性
1、判斷游戲是否公平,要看事件發生的可能性是否相等。
2、摸球游戲(用分數表示可能性的大小)
(1)通過游戲所列的條件,推測某種情況出現的概率;
(2)能判斷事件發生可能性的大小,寫出所有可能發生的情況,推測可能發生的結果。
知識點:用分數表示可能性的大小。
客觀事件中,“不可能”出現的現象用數據表示為“可能性是0”,客觀事件中,“一定能”出現的現象用數據表示為“可能性是“1”,當可能性是相等的時候,用數據表述是“ ”。
逐步體會到數據表示的簡潔性與客觀性。
五年級上冊數學復習計劃
一、對復習的認識
1、一冊教材學完,學生頭腦中的知識結構處于雜亂、含糊、無序的狀態,必須進行系統歸類、整理、綜合,幫助學生形成網狀立體知識結構系統。歸納過程中,要讓學生有序地多角度概括地思考問題,溝通內在聯系。
2、進行區別比較,包括縱向、橫向的比較。分析知識的意義性質、規律的異同,把各方面的知識像串珍珠一樣連接起來,納入學生的認知系統,便于記憶儲存,理解運用。
3、復習內容要有針對性。對學生知識的缺陷、誤區、理解困難的重點、難點、疑點進行有針對性的復習理解。復習課知識的覆蓋面廣、針對性和系統性要有機結合。
4、復習課不能忽視教師的主導地位:教師要主動理清知識體系,分層、分類、分項,拉緊貫穿全冊教材的主線。發現學生普遍不會的,難理解的,遺漏的要重點講。善于把多方面知識進行綜合復習,注意知識的多變性、包容性。
5、教師要認真設計好每節復習課所重點講解的例題。每一節復習課要環環相連,每道復習例題要體現循序漸進。一道復習例題擊中多個知識點,起一個牽一發而動全身的作用。
6、復習中的練習題,不是舊知識的單一重復,機械操作,要體現知識的綜合性,體現質的飛躍,訓練學生思維的敏捷性、創造性。
7、復習課要發揮學生的主體作用,可以發動學生歸類分項,發動學生出題,發動學生討論,讓學生去求異、聯想、發散,主動探索,尋查知識點,讓學生形成知識框架。
二、復習時要注意的幾個問題
1、要重視查漏補缺。要根據所教班級的情況,確定班級的復習計劃,對相對比較薄弱的內容要加強復習和練習。
2、要注意區別對待不同的學生。對不同的學生要有不同的要求。在復習題的設計中要十分注意層次性。
3、要重視學生積極主動的參與到復習過程中去。可采用的一些形式:學生自己出題目練習,學生自己去整理知識;學生與學生之間去交流與合作。
三、復習內容和要點
關于基礎卷
1、計算
分數、小數的四則計算,分數與小數的混合運算。
(1)一、二步的式題要求學生直接寫出答案。
(2)計算,要求得數保留幾位小數或商用循環小數表示。(包括乘除法)
(3)分數、小數的三步計算式題(帶小、中括號)
如:31/4+3/43
0.4[63.9(7-2.5)]
7/15[1-(4/5-2/3)]
(4)解方程。
(5)比大小。(數與式)
(6)運用積的不變性質。
2、棱長、表面積(包括展開圖)、體積、容積的計算。
(1)注意單位的統一;
(2)只要求學生掌握一些基本的計算方法并能應用(基礎卷);
(3)要求學生自己測量出數據并進行計算;
(4)注意知識之間的內在聯系,能綜合應用知識解題。
3、應用題
(1)面積和體積的應用題
(2)分數應用題(稍復雜)
要同時注重算術思路和方程思路。
例1:食堂有4噸煤,第一周用去這堆煤的2/5,第二周又用去9/10噸。二周共用去煤多少噸?還剩多少?
例2:在手工課上,第一組同學糊紙袋180只,第二組同學糊紙袋數是第一組的8/9。第一組同學比第二組多糊多少個紙袋?
四、課時安排
1、長方體和立方體3課時
2、分數加減法1課時
3、分數小數乘法和除法2課時
4、綜合應用1課時
5、模擬測試4課時